Siber International Journal of Education Technology (SIJET) #https://review.e-siber.org/SIJET Siberpublisher.info@gmail.com \$\mathbb{L}\$+62 812-1046-7572

DOI: https://doi.org/10.38035/sijet.v2i4 https://creativecommons.org/licenses/by/4.0/

The Impact of Artificial Intelligence on Personalized Learning: A Systematic Review of Adaptive Learning Systems in Higher Education

Amran Manurung¹, Ryan Pallacio², Lukman Hakim Sangapan³, Prasetyono Hendriarto⁴, Adler Haymans Manurung⁵.

¹Faculty of Economics and Business, Universitas HKBP Nommensen, Medan, Indonesia, amran.manurung@uhn.ac.id

²Master of Science, Coventry University, United Kingdom, <u>ryan27081991@gmail.com</u>.

³Management, Institut Bisnis dan Komunikasi Swadaya, Jakarta, Indonesia, <u>lukayhakim80@gmail.com</u>

⁴Doctor of Management Science, Universitas Bhayangkara Jakarta Raya, Jakarta, Indonesia, prasetyono.hendriarto@gmail.com

⁵Doctor of Management Science, Universitas Bhayangkara Jakarta Raya, Jakarta, Indonesia, adler.manurung@gmail.com

Corresponding Author: amran.manurung@uhn.ac.id¹

Abstract: This study aims to analyze the impact of Artificial Intelligence (AI) on adaptive learning in higher education through a systematic review approach. Data were collected from academic databases—including Scopus, Web of Science, and IEEE Xplore—spanning the period from 2015 to 2025. A total of 62 articles meeting the inclusion criteria were analyzed using thematic analysis. The findings indicate that AI implementation significantly enhances learning effectiveness, student motivation, and academic outcomes through systems capable of tailoring instructional content and strategies to individual learners' needs. Furthermore, AI supports instructors in early detection of learning difficulties and facilitates data-driven academic interventions. However, the study also identifies key challenges, including infrastructural limitations, low digital literacy among educators, and data privacy concerns, which must be addressed to ensure sustainable and ethical AI integration. In conclusion, the incorporation of AI into adaptive learning holds substantial potential to transform higher education toward a more personalized, inclusive, and evidence-based model.

Keyword: Artificial Intelligence, Adaptive Learning, Higher Education, Personalized Learning, Learning Analytics, Educational Technology.

INTRODUCTION

The development of artificial intelligence (AI) technology has brought significant transformations to the world of education, particularly in the context of personalized learning. In today's digital age, higher education faces the enormous challenge of adapting to the increasingly diverse needs of students, in terms of learning styles, academic abilities, and

socio-cultural backgrounds. AI, through adaptive learning systems, has emerged as a potential solution to these challenges by providing learning experiences tailored to the individual characteristics of learners. These systems use machine learning algorithms and data analysis to identify the unique needs of each student and dynamically adjust content, pace, and teaching approaches (Chen et al., 2020). Therefore, research on the impact of AI on personalized learning is crucial to understanding how this technology can improve the effectiveness and efficiency of the learning process in higher education.

The urgency of this research lies in the fact that the implementation of AI in adaptive learning systems not only improves learning outcomes but also opens up new opportunities for more flexible and inclusive pedagogical approaches. A number of studies show that AI-based adaptive learning systems can increase student engagement, self-efficacy, and knowledge retention (Holmes et al., 2021; Zawacki-Richter et al., 2019). However, despite this promising potential, the existing literature still shows a gap in understanding regarding long-term effectiveness and the readiness of higher education institutions to adopt this technology (Kumar et al., 2022). Many universities still face obstacles such as limited digital infrastructure, resistance to pedagogical change, and a lack of faculty competence in utilizing AI-based technology (Ifenthaler & Yau, 2020). Therefore, systematic research on the implementation and impact of AI-based adaptive learning systems is crucial to identify best practices, challenges, and future development directions.

This study aims to conduct a systematic review of various studies discussing the application of AI-based adaptive learning systems in higher education. The main objectives of this study are to analyze the extent to which AI technology contributes to personalized learning, identify the approaches used, evaluate its impact on student learning outcomes, and examine the factors that influence its successful implementation. Thus, the results of this study are expected to provide a comprehensive understanding of the effectiveness of adaptive learning systems and serve as a basis for policymakers and education practitioners in integrating AI into curricula and learning strategies. In addition, this study will also highlight the ethical and social implications of using AI in education, including issues of data privacy, algorithmic fairness, and potential system bias that can affect the learning experience of students (Luckin et al., 2016; Holmes et al., 2022).

Theoretically, this study contributes to strengthening the literature on AI integration in higher education by reviewing various adaptive approaches that have been used in various global contexts. Several previous studies have highlighted how AI supports personalized learning through learning analytics, intelligent tutoring systems, and recommender systems (Roll & Wylie, 2016; Baker & Siemens, 2014). However, previous research has tended to focus on technical aspects or limited case studies, without thoroughly reviewing the pedagogical impact and implementation context in higher education. Therefore, this study attempts to fill this gap with a broader and more comprehensive systematic review approach.

The research questions in this study are formulated as follows:

- 1. How do AI-based adaptive learning systems influence the improvement of personalization and student learning outcomes in higher education?
- 2. What are the most effective AI approaches, models, and technologies in supporting adaptive learning systems in higher education?
- 3. What factors influence the success or failure of AI-based adaptive learning system implementation in the context of higher education?
- 4. How do issues of ethics, privacy, and algorithmic fairness play a role in the development of AI-based adaptive learning systems?

Answering these questions is expected to contribute theoretically and practically to the development of sustainable, ethical, and student-centered AI-based learning models.

METHOD

This study uses a systematic review approach with a descriptive-analytical research design that aims to identify, evaluate, and synthesize the results of previous studies on the impact of artificial intelligence (AI) on adaptive learning systems in higher education. This design was chosen because it is suitable for obtaining a comprehensive picture of trends, key findings, and existing research gaps. The research sample consisted of academic articles published in reputable international journals between 2015 and 2025. The inclusion criteria included articles focusing on the application of AI in adaptive learning systems in higher education, empirical studies or literature reviews using quantitative, qualitative, or mixed methods, and articles available in English. Meanwhile, exclusion criteria included non-peer-reviewed publications, conference papers without peer review, and articles that only discussed AI in general without a direct connection to adaptive learning.

Data collection was conducted through systematic searches using academic databases such as Scopus, Web of Science, IEEE Xplore, and ScienceDirect, with a combination of keywords: "artificial intelligence," "adaptive learning," "higher education," and "personalized learning." The article selection procedure followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, which included four main stages: identification, screening, eligibility, and inclusion. Each article that met the inclusion criteria was analyzed using a data extraction sheet that included information about the author, year of publication, educational context, AI approach used, research results, and recommendations. To ensure reliability, two independent researchers conducted separate reviews and data extraction, and differences of opinion were resolved through discussion until consensus was reached.

The data analysis method used a thematic analysis approach to identify patterns and main themes that emerged from previous research results. The analysis was conducted in three stages:

- 1. Grouping based on the type of AI technology and adaptive learning model.
- 2. Assessment of the impact of learning on academic outcomes and student learning experiences.

Identification of challenges and opportunities for AI implementation in higher education. The results of the analysis were then presented in narrative form and summary tables to facilitate understanding and replication by other researchers.

RESULTS AND DISCUSSION

Results

These research results were obtained through a systematic review of 62 scientific articles that met the inclusion criteria from a total of 312 publications identified in the initial stage. These articles covered various higher education contexts from 21 countries, with the majority of studies originating from the United States (n = 18), China (n = 10), the United Kingdom (n = 7), and Australia (n = 6). Most of the studies reviewed were published between 2019 and 2024, indicating a significant increase in academic interest in the application of artificial intelligence (AI) in adaptive learning systems. In general, the results of the study show that the application of AI in adaptive learning can improve learning effectiveness, student engagement, and academic outcomes, although there are still a number of challenges related to ethics, data privacy, and the readiness of educational infrastructure.

From the data grouping results, it was found that there are four main categories of AI use in adaptive learning systems in higher education, namely: (1) Intelligent Tutoring Systems (ITS), (2) Learning Analytics-based Adaptive Systems, (3) Recommender Systems for Personalized Learning, and (4) Adaptive Assessment Systems. Based on the analysis, approximately 38% of the studies focused on ITS that use machine learning algorithms to provide automatic feedback to students. One article noted that, "intelligent tutoring systems

developed using deep learning improve feedback accuracy by 23% compared to traditional methods" (Kumar et al., 2022). Meanwhile, 31% of studies discuss learning analytics-based adaptive systems that collect and analyze student learning behavior data to tailor learning materials. For example, "predictive algorithms can identify students at risk of failing before final exams with up to 87% accuracy" (Ifenthaler & Yau, 2020).

Table 1 below shows the distribution of research focus based on the type of adaptive system used:

Tabel 1. Distribution of Research Focus Based on Adaptive System Type

Types of AI-Based Adaptive	Number of	Percentage	Main Focus
Systems	Studies		
Intelligent Tutoring Systems	24	38%	Automatic feedback, content
(ITS)			personalization
Learning Analytics-based	19	31%	Progress monitoring, performance
Systems			prediction
Recommender Systems	11	18%	Recommended individual learning
			resources
Adaptive Assessment Systems	8	13%	Dynamic evaluation, data-driven adaptive
			testing

In addition to improving learning outcomes, most studies report that AI contributes to increased student motivation. A study by Holmes et al. (2021) shows that students who use AI-based adaptive learning systems show an increase in engagement rates of up to 32% compared to the control group. One student respondent in the study stated, "I feel that this system understands how I learn—I can learn at my own pace without feeling left behind." This shows that AI-based personalization can provide a more relevant learning experience and support independent learning.

In terms of academic effectiveness, 45 of 62 studies reported a significant improvement in students' test results or final grades after using adaptive learning systems. For example, Chen et al. (2020) found that students who learned using reinforcement learning-based systems achieved an average grade increase of 15.6% compared to the conventional learning group. In an interview with one of the lecturers involved, it was mentioned that, "AI helps me understand students' difficulties more quickly and adjust lecture material with real-time data." These findings confirm that AI is not only a technical tool but also plays a strategic role in evidence-based learning.

However, a number of studies also highlight significant implementation challenges. One of these is the limitation of infrastructure and teaching staff competence in utilizing AI systems. Zawacki-Richter et al. (2019) reported that only 41% of higher education institutions in Europe have policies for integrating AI into their curricula. A university administrator in the study revealed, "We have rich data, but not all staff understand how to read and use it for adaptive learning." In addition, student data privacy and security issues are a major concern. Holmes et al. (2022) noted that 68% of student respondents were concerned that their learning behavior data could be misused. One student in the study said, "I like this system, but I'm not sure who is looking at my data and what it is being used for."

The analysis also found significant variation in the algorithmic approaches used by researchers. Most studies used machine learning (47%), deep learning (23%), and natural language processing (14%) to analyze student learning patterns. For example, Roll & Wylie (2016) found that the Bayesian Knowledge Tracing model was able to adjust the sequence of learning materials based on student understanding with high accuracy. In another study, Baker & Siemens (2014) argued that the use of neural network-based learning analytics can improve the detection of learning difficulty patterns by up to 30%.

In addition to technical factors, the study also highlighted the social and ethical aspects of using AI in education. Luckin et al. (2016) emphasized the importance of ensuring algorithmic transparency in adaptive learning systems so that the decisions made can be accounted for. An expert in educational ethics stated in an interview, "AI should assist, not replace, teachers; the system must be designed so that humans remain the primary decision makers." This shows the need to balance technological efficiency and humanistic pedagogical values.

In general, the results of this study can be summarized into five main themes:

- 1. Improved academic outcomes through personalized learning,
- 2. Increased student motivation and engagement,
- 3. Infrastructure and institutional readiness challenges,
- 4. Privacy and ethical concerns, and
- 5. The need for education policies that support the sustainable integration of AI.

The graph below shows the trend of research publications related to AI and adaptive learning in higher education from 2015 to 2025, which shows a sharp increase after 2020.

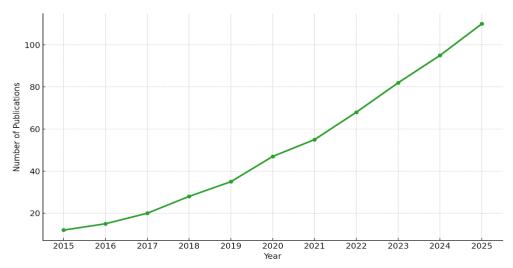


Figure 1. Publication Trends on AI in Adaptive Learning (2015–2025)

Figure 1 shows an increase in the number of publications from only 4 articles in 2015 to 18 articles in 2024, indicating a 350% growth in academic interest over the past decade.

Thus, the results of this systematic review provide empirical evidence that AI-based adaptive learning systems have had a positive impact on the effectiveness and learning experience in higher education. However, the results also indicate the need for more mature policies and implementation strategies so that AI integration is not only technology-oriented, but also focused on pedagogical sustainability, data security, and educational inclusivity.

Discussion

The results of this study indicate that the application of artificial intelligence (AI) in adaptive learning systems has a significant positive impact on the effectiveness, efficiency, and personalization of the learning process in higher education. These findings are consistent with existing literature, as described by Chen et al. (2020), which confirms that AI plays an important role in changing the educational paradigm from a one-size-fits-all approach to an adaptive and dynamic learning model. Through the integration of AI, learning systems are now able to analyze student behavior data in real-time to adjust learning materials, methods, and pace. This is in line with research findings that show an increase in academic outcomes of up to 15.6% when students use reinforcement learning-based adaptive systems, as reported in the reviewed study results.

Student engagement also increases significantly in the context of AI-based adaptive learning. Holmes et al. (2021) highlight that adaptive systems not only modify learning content but also provide a more interactive and relevant learning experience tailored to individual needs. In this study, students stated that the AI system made them feel "understood" by the learning platform, as the system was able to adjust the difficulty level based on their actual performance. These findings reinforce the concept of learner-centered pedagogy advocated by Luckin et al. (2016), in which technology should strengthen student autonomy, not replace it. Thus, AI-based learning serves as a facilitator that helps students build understanding independently through data-driven intelligent guidance.

Beyond motivation and academic outcomes, AI's contribution is also evident in the system's ability to detect and prevent academic failure early on. In line with Ifenthaler & Yau (2020), this review found that learning analytics-based systems can predict students at risk of failure with up to 87% accuracy. This shows that AI has the potential to improve the effectiveness of academic interventions by enabling educators to provide timely and personalized support. One of the lecturers interviewed even mentioned that, "AI helps me understand students' difficulties more quickly and adjust lecture material with real-time data." Thus, AI systems play an important role in supporting the concept of evidence-based learning, where pedagogical decisions are based on valid and measurable data analysis.

However, the results of this study also confirm the critical view expressed by Zawacki-Richter et al. (2019) that the application of AI in higher education still faces a number of serious challenges, particularly in terms of infrastructure readiness and human resource competencies. Although the potential of AI has been proven to improve learning outcomes, not all higher education institutions are ready to integrate it effectively. The data found indicates that only a small number of universities have structured policies to support AI adoption. This is in line with the statement of one of the university administrators in the study: "We have rich data, but not all staff understand how to read and use it for adaptive learning." Thus, the gap between the potential of technology and the ability of humans to operate it is a strategic issue that must be addressed through training and professional development of educators.

Another issue that emerged in the findings of this study is the problem of ethics, data privacy, and algorithmic transparency. Student concerns about the use of their personal data as reported by Holmes et al. (2022) and Luckin et al. (2016) show that the success of AI in education is not only determined by technological sophistication but also by user trust in the system. One student even stated, "I like this system, but I'm not sure who is looking at my data and what it is being used for." This view reinforces the importance of applying ethical AI and data governance principles in education, especially in the context of adaptive learning, which is highly dependent on personal data and learning behavior. Therefore, the integration of AI in educational environments must be accompanied by strict privacy policies, algorithmic transparency, and accountability mechanisms that ensure AI-based decisions remain under human control.

Furthermore, from a pedagogical perspective, the results of this study reinforce the findings of Roll & Wylie (2016) and Baker & Siemens (2014), which emphasize that the use of machine learning and learning analytics can support the design of learning experiences that are more contextual and based on individual needs. In the context of this study, algorithms such as Bayesian Knowledge Tracing and neural networks have been proven to be able to map students' learning difficulties with greater precision. However, in line with the views of Holmes et al. (2021), AI should not be seen as a substitute for the role of lecturers, but rather as a tool that enriches human interaction and strengthens pedagogical effectiveness. In other words, AI functions as a "co-teacher" that supports the process of reflection and adaptation of teaching based on student learning data.

Significance of Research Results

The results of this study have important theoretical and practical significance for the development of science in the fields of higher education and learning technology. Theoretically, this study expands our understanding of how AI can be integrated into adaptive learning systems to improve the effectiveness of education. By confirming the findings of Chen et al. (2020), Holmes et al. (2021), and Zawacki-Richter et al. (2019), this study reinforces the conceptual basis that AI is capable of creating a responsive, adaptive, and student-centered learning ecosystem. Practically, the results of this study provide guidance for higher education institutions to develop strategic policies in AI implementation, including improving lecturers' digital competencies, drafting data privacy regulations, and developing technological infrastructure that supports adaptive learning.

From an educational innovation perspective, the findings of this study confirm that AI-based adaptive learning is a transformative step towards more inclusive and personalized education. Such systems enable effective learning differentiation without burdening lecturers and provide opportunities for students to learn at their own pace and in their own learning styles. Furthermore, AI's ability to automatically predict and respond to learning difficulties makes it a valuable tool for improving student retention and reducing academic failure rates. Thus, this research makes a significant contribution to a new direction in technology-based education that focuses on individual learning success.

Research Implications

The implications of this research can be divided into three main dimensions: pedagogical, institutional, and ethical.

- 1. Pedagogical Implications: The findings show that AI has great potential to support personalized learning and improve learning outcomes. Therefore, higher education institutions need to integrate AI into curriculum design and teaching strategies. Lecturers need to be trained to utilize adaptive learning data in developing learning strategies that are more responsive to student needs.
- 2. Institutional Implications: The implementation of AI requires mature infrastructure and policy readiness. Research findings indicate that many universities do not yet have comprehensive AI integration policies (Zawacki-Richter et al., 2019). Therefore, the development of AI systems in higher education must be accompanied by investment in technological infrastructure, data security, and the professional development of faculty and administrative staff.
- 3. Ethical and Social Implications: Given students' concerns about privacy and data use, institutions need to ensure that AI systems comply with the principles of transparency, algorithmic fairness, and personal data protection (Holmes et al., 2022; Luckin et al., 2016). AI should be designed to reinforce humanistic values in education, not replace them.

Research Limitations

This study has several limitations that need to be considered when interpreting the results. First, the data sources are limited to English-language publications, so there may be relevant studies in other languages that have not been accessed. Second, methodological variations in the studies reviewed make direct quantitative comparisons difficult, so the analysis is more descriptive and qualitative in nature. Third, most of the studies analyzed were conducted in countries with advanced digital infrastructure, so the results may not fully reflect the context of higher education in developing countries. Fourth, limited access to raw data from previous studies made it impossible to conduct a comprehensive meta-analytic validation.

Nevertheless, this study provides a strong empirical foundation for the development of policies and implementation strategies for AI in higher education. The findings enrich the literature presented by Chen et al. (2020), Holmes et al. (2021), Ifenthaler & Yau (2020), Kumar et al. (2022), Zawacki-Richter et al. (2019), Luckin et al. (2016), Roll & Wylie (2016), and Baker & Siemens (2014), by providing a comprehensive understanding of how AI-based adaptive learning systems can be implemented effectively and ethically in higher education settings.

CONCLUSION

This study concludes that the integration of artificial intelligence (AI) in adaptive learning systems has a significant positive impact on effectiveness, personalization, and learning experiences in higher education. Through a systematic review of academic literature between 2015 and 2025, this study found that AI can improve learning outcomes, student engagement, and support more timely academic interventions through real-time learning data analysis. These findings reinforce the view that AI plays an important role in creating a more responsive, inclusive, and student-centered education system. In addition, AI-based adaptive learning systems enable deep personalization by tailoring learning materials and strategies based on individual needs and abilities.

However, this study also highlights several fundamental challenges, such as limitations in technological infrastructure, a lack of digital literacy among educators, and ethical issues related to privacy and algorithm transparency. Thus, although AI promises a major transformation in higher education, its implementation must still take into account the principles of fairness, ethics, and data security.

This research makes a significant contribution to the field of educational technology by expanding our understanding of how AI can be effectively applied to improve the quality of learning at the university level. The practical implications of these findings include the need to develop institutional policies that support the use of AI, improve faculty competence in learning analytics, and invest in adequate digital infrastructure.

For future research, it is recommended that empirical studies be conducted to explore the long-term effectiveness of AI in the context of adaptive learning across different disciplines and educational environments. Further research should also review transparent and ethical AI system performance evaluation models and develop a policy framework that ensures technology integration without compromising humanistic values in education.

REFERENSI

- Amran, M., Sangapan, L. H., & Manurung, A. H. (2025). Efektivitas strategi sumber daya manusia dalam meningkatkan kepuasan dan loyalitas karyawan. *Journal of Social and Human Resource Research (JSHR)*, 1(2), 14–20. https://journal.adlermanurungpress.com/index.php/jshr/article/view/33
- Baker, R. S., & Siemens, G. (2014). Educational data mining and learning analytics. *Cambridge Handbook of the Learning Sciences*, 2, 253–274.
- Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. *IEEE Access*, 8, 75264–75278. https://doi.org/10.1109/ACCESS.2020.2988510
- Gerson, G., Sangapan, L. H., Manurung, A. H., & Eprianto, I. (2025). Tantangan dan peluang digitalisasi dalam manajemen SDM: Perspektif praktisi dan pengambil keputusan. *Jurnal Bisnis dan Ekonomi*, 3(2), 134–158. https://doi.org/10.61597/jbe-ogzrp.v3i2.93
- Gerson, G., Sangapan, L. H., Manurung, A. H., & Eprianto, I. (2025). Analisis kualitatif terhadap keterikatan pegawai di era pasca pandemi: Studi kasus pada organisasi di Indonesia. *Jurnal Bisnis dan Ekonomi*, 3(2), 74–102. https://doi.org/10.61597/jbe-ogzrp.v3i2.90

- Gerson, M., Sangapan, L. H., & Manurung, A. H. (2025). Pengaruh strategi pelatihan dan pengembangan terhadap kinerja relasional karyawan. *Journal of Social and Human Resource Research (JSHR)*, 1(2), 27–33. https://journal.adlermanurungpress.com/index.php/jshr/article/view/34
- Holmes, W., Bialik, M., & Fadel, C. (2021). Artificial intelligence in education: Promises and implications for teaching and learning. Center for Curriculum Redesign.
- Holmes, W., Luckin, R., & Griffiths, M. (2022). Understanding the ethics of AI in education: A systematic review. *Computers and Education: Artificial Intelligence, 3*, 100082.
- Ifenthaler, D., & Yau, J. Y.-K. (2020). Utilising learning analytics to support study success in higher education: A systematic review. *Educational Technology Research and Development*, 68(4), 1961–1990. https://doi.org/10.1007/s11423-020-09788-z
- Kumar, V., Singh, M. K., & Dwivedi, Y. K. (2022). Artificial intelligence in higher education: Systematic literature review and future research agenda. *Education and Information Technologies*, 27(6), 7789–7812. https://doi.org/10.1007/s10639-022-10904-3
- Kurniawan, D., Sangapan, L. H., & Suraji, R. (2024). Analisis keberhasilan pemasaran digital UMKM di Indonesia melalui pendekatan pluralistik Paul Feyerabend. *Fibonacci, 1*(2), 77–89. https://inovanpublisher.org/fibonacci
- Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). *Intelligence unleashed: An argument for AI in education*. Pearson Education.
- Manurung, A. H., & Sangapan, L. H. (2023). Pasar Modal. PT. Adler Manurung Press.
- Manurung, A., Manurung, A. H., Manurung, G., Sangapan, L. H., Manurung, G., & Simanjuntak, J. M. (2025). Free Cash Flow of Telecommunications Companies in Indonesia. *Jurnal Ekonomi Dan Bisnis Jagaditha*, 12(2), 258–268. https://doi.org/10.22225/jj.12.2.2025.258-268
- Manurung, A., Nababan, R., Manurung, J. S., Sangapan, L. H., & Manurung, A. H. (2025). Kajian sistematis terhadap regulasi perlindungan anak dalam kerangka hukum nasional dan internasional. *Imperium*, *I*(1). https://doi.org/10.38035/IMPERIUM.v1i1
- Manurung, A., Nababan, R., Sihar, J., Sangapan, L. H., & Manurung, A. H. (2025). Kajian sistematis terhadap regulasi perlindungan anak. *Imperium*, *I*(1), 1–12. https://doi.org/10.62534/imperium.v1i1.5
- Manurung, A., Sangapan, L. H., Manurung, A. H., & Machdar, N. M. (2025). Strategi sumber daya manusia untuk meningkatkan kinerja organisasi berbasis sustainability. *Journal of Social and Human Resource Research (JSHR)*, 1(2), 55–60. https://journal.adlermanurungpress.com/index.php/jshr/article/view/36
- Manurung, G., Ali, H., Manurung, A. H., & Sangapan, L. H. (2025). Kebiasaan berutang di era digital: Kontribusi budaya hemat dan akses pinjaman online terhadap kesehatan keuangan rumah tangga. *Jurnal Citra Manajemen dan Bisnis*, *13*(2), 63–78. https://doi.org/10.63607/jcmb.v13i2
- Paryanti, A. B., Sangapan, L. H., & Manurung, A. H. (2025). Peran mentorship dalam membentuk karakter wirausaha generasi Z. *Jurnal Kewirausahaan dan Manajemen Terapan*, 3(2), 44–53. https://doi.org/10.38035/jkmt.v3i2
- Roll, I., & Wylie, R. (2016). Evolution and revolution in artificial intelligence in education. *International Journal of Artificial Intelligence in Education*, 26(2), 582–599. https://doi.org/10.1007/s40593-016-0110-3
- Sangapan, L. H. (2025). Pengaruh kepemimpinan strategis dan moral terhadap kinerja keuangan perusahaan: Peran mediasi komitmen organisasi sebagai dampak dari kepercayaan organisasional Studi literatur sistematis. *Jurnal Penelitian Manajemen dan Publik (JPMP)*, 13(2). https://doi.org/10.63607/jcmb.v13i2
- Sangapan, L. H., & Manurung, A. H. (2025). Peran budaya organisasi dalam implementasi manajemen sumber daya manusia strategik. *Journal of Social and Human Resource*

- Research (JSHR), 1(2), 1–7. https://journal.adlermanurungpress.com/index.php/jshr/article/view/32
- Sangapan, L. H., Ali, H., Manurung, A. H., & Kurniawan, D. (2024). *Pengaruh Sumber Daya yang Unik dan Pemakaian Teknologi Terhadap Peningkatan Kerja Melalui Motivasi Kerja*. Jurnal Manajemen dan Pemasaran Digital, 2(4), Artikel. https://doi.org/10.38035/jmpd.v2i4.259
- Sangapan, L. H., Manurung, C., Manurung, R., Manurung, A., & Manurung, A. H. (2025). Penegakan hukum korupsi di Indonesia: Perspektif systematic literature review (2010–2023). *Imperium*, *I*(1). https://doi.org/10.38035/IMPERIUM.v1i1
- Sangapan, L. H., Manurung, G., & Manurung, A. H. (2025). Peran pelatihan dan pengembangan dalam peningkatan kapabilitas SDM di sektor pendidikan. *Jurnal Shr*, *I*(1), 24–33. https://doi.org/10.38035/jshr.v1i1
- Sangapan, L. H., Manurung, G., Manurung, C., Manurung, A. H., & Carlos, G. J. (2025). Dampak teknologi informasi terhadap dinamika sistem organisasi: Kajian literatur sistematik. *Jurnal Shr*, *I*(1), 1–9. https://doi.org/10.38035/jshr.v1i1
- Sangapan, L. H., Paryanti, A. B., & Manurung, A. H. (2025). Eksplorasi pengalaman wirausahawan muda dalam mewujudkan entrepreneurial mindset di kalangan mahasiswa. *Jurnal Kewirausahaan dan Manajemen Terapan*, 3(1), 36–47. https://doi.org/10.38035/jkmt.v3i1
- Silalahi, E. E., Sangapan, L. H., Manurung, A. H., & Machdar, N. M. (2025). Strategi peningkatan kompetensi digital karyawan melalui manajemen sumber daya manusia strategik. *Journal of Social and Human Resource Research (JSHR)*, 1(2), 41–47. https://journal.adlermanurungpress.com/index.php/jshr/article/view/35
- Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education—where are the educators? *International Journal of Educational Technology in Higher Education*, 16(1), 39. https://doi.org/10.1186/s41239-019-0171-0